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Abstract. Describing space and laboratory plasmas, arterial mechanics and optical fibers, a generalized
variable-coefficient nonlinear Schrödinger model is hereby under investigation. Four transformations have
been constructed from such a model to the known standard and cylindrical nonlinear Schrödinger equa-
tions with the relevant constraints on the variable coefficients presented. Symbolic computation is per-
formed. Specialities of those transformations are discussed. Analytic solutions of such a generalized variable-
coefficient model can be obtained via those transformations from the analytic solutions of the standard
and cylindrical ones.

PACS. 02.70.Wz Symbolic computation (computer algebra) – 05.45.Yv Solitons – 52.35.Mw Nonlinear
phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling,
ponderomotive effects, etc.) – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical
chaos and complexity, and optical spatio-temporal dynamics – 87.19.Uv Haemodynamics, pneumodynamics

Among the most important models of modern non-
linear sciences are the variable-coefficient nonlinear
Schrödinger-typed ones, which describe such situations
more realistically than their constant-coefficient coun-
terparts, in plasma physics, arterial mechanics and
long-distance optical communications, as seen, e.g.,
in references [1–18]. We hereby consider the following
generalized variable-coefficient nonlinear Schrödinger
model,

i ut + k(t)uxx + l(t) |u |2 u = −i Γ (t)u, (1)

where u is a complex function of (x, t) ∈ R2, while k(t),
l(t) and Γ (t) are all real functions. Equation (1) can be
equivalently expressed as

i ψτ + i λ(τ)ψξ + k(τ)ψξξ + l(τ)ψ |ψ |2 = −i Γ (τ)ψ, (2)

with the transformation [19],

t←→ τ, x←→ ξ −
∫
λ(τ) dτ, u(x, t)←→ ψ(ξ, τ), (3)

where λ(τ) is also a real function.
In space/laboratory plasmas, fluid dynamics and opti-

cal fibers, special cases of equation (1) or (2) can be seen
as follows:
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(1) Space/laboratory dusty plasmas have attracted a
great deal of interest [20,21]. Equation (1) can reduce to
the cylindrical and spherical geometry-modified nonlinear
Schrödinger model for the dust-acoustic envelope solitary
waves [5],

i φτ − P φξξ −Qφ |φ |2 + i
m

2 τ
φ = 0, (4)

where τ and ξ are the stretched time and radial coordi-
nates, φ represents the electrostatic wave potential, m = 1
or 2, while P and Q are the constants for plasma sys-
tem [5].

(2) For the dispersion-managed optical fibers and
soliton lasers, equation (1) is seen as the generalized
nonlinear Schrödinger model with varying/distributed
coefficients [1,3,6] (and references therein),

iΨZ±D(Z)
2

ΨXX +N(Z)Ψ |Ψ |2=−i γ0 Ψ + i γ(Z)Ψ, (5)

where D(Z), N(Z) and γ(Z) are respectively the disper-
sion, nonlinearity and amplification.

(3) In certain inhomogeneous optical fibers, a special
case of equation (1) is written as

i Az + d(z)Att + c(z)A |A |2= 0, (6)
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where t and z represent the retarded time and propagation
distance, A denotes the envelope of the optical field, while
the periodic functions d(z) and c(z) picture out the local
group-velocity dispersion and variation of power due to
loss and amplification. Equation (6) can be named as the
dispersion-managed nonlinear Schrödinger model [9], or
others [7,8,10].

(4) In the space/laboratory non-uniform plasmas or
optical fibers with varying loss and gain, a special case of
equation (1),

uZ =
i

2
uTT + i a2(Z) |u |2 u, (7)

has been used to describe the Rayleigh-Taylor instabil-
ity [11,12,22], an electron-beam plasma wave [12–14,23]
and an optical soliton in a dielectric fiber [15,24]. Other
equivalent forms of equation (7) include those for the pulse
dynamics in the dispersion-managed fibers [25] and com-
pression effect of chirped picosecond pulses in fibers [26].

(5) Applicable in arterial mechanics are the pressure
pulses in fluid-filled expansible tubes [27]. With the
blood as an incompressible viscous fluid and arteries as
thin-walled, tapered, prestressed elastic tubes, nonlinear
waves there can be described by the dissipative nonlinear
Schrödinger model with variable coefficient [16],
i Uτ + µ1 Uξξ + µ2 U |U |2 + iµ3Θ τ Uξ + i µ7U = 0, (8)

where τ and ξ are the stretched coordinates from the time
and axial coordinates after static deformation, U corre-
sponds to the dynamical radial displacement upon such
initial static deformation, Θ illustrates the tapering an-
gle, µ7 stands for the viscosity of blood, µ3 is contributed
from variable radius, µ1 and µ2 are the arterial-system
parameters, while the case of µ4 = µ5 = µ6 = 0 is consid-
ered. Equation (8) is a special case of equation (2).

(6) For the linearly-polarized light pulses in an
inhomogeneous optical fiber, equation (2) reduces to the
variable-coefficient nonlinear Schrödinger model [17],

i ψZ + iv−1
g ψT − 1

2
β2(Z)ψTT + γ ψ |ψ |2= 0, (9)

where T and Z are the time and distance of transmission,
ψ represents the electric-field envelope, vg is the group
velocity, γ is the nonlinear coefficient, β2(Z) is the group-
velocity-dispersion coefficient function.

(7) For the pulse compression technique capable
of producing high-quality 1.3-ps pulses at a repetition
rate of 10 GHz, equation (1) reduces to the nonlinear
Schrödinger model expressed in a reference frame moving
at the group velocity [18],

uz =
α(z)

2
u+

i β2

2
utt − i γ u |u |2, (10)

where u is the field envelope, β2 is the group velocity dis-
persion and γ is the nonlinear coefficient.

In this paper, our goals are to construct some transfor-
mations from equation (1) [or equivalently, Eq. (2)] to the
known equations, obtain the corresponding constraints on
the variable coefficients, and present the relevant discus-
sions. Symbolic computation [21,28] will be carried out for
dealing with the coefficient functions and other analytic
expressions.

We start the work with our proposal of the format for
transformations:

u(x, t) = A(t) q[X(x, t), T (t) ] e iB(x,t), (11)
where X(x, t), T (t), A(t) and B(x, t) are all real functions
with A(t) �≡ 0, T ′(t) �= 0 and Xx(x, t) �= 0, while q(X,T )
is a complex function to be determined. The reason for
A(t) to be factored out of q(X,T ) in format (11) is the
existence of the coefficient functions of t in equation (1).
Substituting format (11) back into equation (1) yields

i AT ′ qT +AkX2
x qXX +A3 l | q |2 q

+i q (A′ +AkBxx +AΓ )−Aq (Bt + k B2
x )

+i A qX (Xt + 2 kBxXx ) +Ak qXXxx = 0, (12)

where the prime sign denotes the differentiation with re-
spect to t. In order to reduce equation (1) to equation (15)
or (22) as below, we need to turn equation (22) into a set
of partial differential equations. Symbolic computation on
the set leads to the following transformations as well (de-
tails ignored):

Transformation A from equation (1) to equation (15):

u(A)(x, t) =
c4√

| c1
[
c0 +

∫
k(t) dt

] |
q[X(x, t), T (t)]

× e−
∫

Γ (t) dt+i

{
c6+

(c2+c1x)2

4 c12[ c0+
∫

k(t) dt]

}
, (13)

with X(x, t) = c2 c3 − c2 + c1 x

c12
[
c0 +

∫
k(t) dt

] ,

T (t) = c5 − 1
c12

[
c0 +

∫
k(t) dt

] , (14)

q(X,T ) satisfying i qT + qXX ± | q |2 q = 0, (15)

l(t)=± 1
c42| c1 |

e2
∫
Γ (t)dtk(t)∣∣c0+∫
k(t)dt

∣∣ as the consistency condition,
(16)

where ci’s are all real constants with c1 �= 0 and
c4 �= 0. Equation (15) is the known standard nonlin-
ear Schrödinger equation, the properties and solutions of
which have been investigated in great detail, as shown,
e.g., in references [17] and references therein, such as its
integrability by the method of Inverse Scattering.

Transformation B from equation (1) to equation (15):

u(B)(x, t) = c10 e
−∫

Γ (t) dt+ i

[
c9− c7 x

2 m0
− c7

2∫
k(t) dt

4 m02

]

× q[X(x, t), T (t) ], (17)

with X(x, t) = c8 +m0 x+ c7

∫
k(t) dt,

T (t) = c11 +m0
2

∫
k(t) dt, (18)

q(X,T ) satisfying equation (15),
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l(t) =±
(
m0

c10

)2

e 2
∫
Γ (t)dtk(t) as the consistency condition,

(19)

where m0 �= 0, c7, c8, c9, c10 �= 0 and c11 are all real
constants.

Transformation C from equation (1) to equation (22):

u(C)(x, t) = −
√| c12/c1 |

c1
[
c0 +

∫
k(t) dt

] q[X(x, t), T (t) ]

× e−
∫
Γ (t) dt+ i

{
c13+

(c2+ c1x)2

4 c12 [ c0+
∫

k(t) dt ]

}
, (20)

with X(x, t) = − c2 + c1 x

c12
[
c0 +

∫
k(t) dt

] ,

T (t) = − 1
c12

[
c0 +

∫
k(t) dt

] , (21)

q(X,T ) satisfying i qT + qXX ± | q |2 q + i
q

2T
= 0 ,

(22)
l(t) =±

∣∣∣∣ c1c12
∣∣∣∣ e 2

∫
Γ (t)dtk(t) as the consistency condition,

(23)

where c12 �= 0 and c13 are both real constants. Equa-
tion (22) is the known cylindrical nonlinear Schrödinger
equation, the properties and solutions of which have been
discussed in references [5,29] and references therein, such
as its perturbation solutions. In equation (22), the “±”
sign represents, e.g., the unstable/stable modulation of
the dust acoustic waves [5].

Transformation D from equation (1) to equation (22):

u(D)(x, t) = c14

√∣∣∣∣ c11 +m0
2

∫
k(t) dt

∣∣∣∣ q[X(x, t), T (t)]

× e−
∫
Γ (t) dt+i

{
c9− c7[ 2 m0 x+c7

∫
k(t)dt]

4m02

}
, (24)

with X(x, t) = c8 +m0 x+ c7

∫
k(t) dt,

T (t) = c11 +m0
2

∫
k(t) dt, (25)

q(X,T ) satisfying equation (22),

l(t)=± 1
c142

e 2
∫

Γ (t) dt k(t)∣∣∣ c11
m02 +

∫
k(t) dt

∣∣∣ as the consistency condition,
(26)

where c14 is real non-zero constant.

Discussions

(1) Each analytic solution for equation (15) [or (22)] can
be substituted into transformations A and B (or transfor-
mations C and D) so that the corresponding analytic solu-
tions for equation (1) [or equivalently, Eq. (2)] come out.
Especially, all the solitonic structures of equations (15)
and (22) can be introduced to equation (1). Some of those
analytic solutions for equation (1) may be new, not seen
as yet in the existing literature.

(2) It is of interest to note that equation (1) can be
reducible to the same equation (15) through both trans-
formation A with constraint (16) and transformation B

with constraint (19), which are quite different. For the
same token, equation (1) can be reducible to the same
equation (22) through both transformation C with con-
straint (23) and transformation D with constraint (26).
By the way, the constraint in reference [30] is a special
case of constraint (16) when Γ (t) ≡ 0.

(3) It is clear that constraints (16) and (26) are the
same in the sense that c0, c1, c4, c11, c14 and m0 are
all arbitrary, non-zero, real constants. Hence, when the
variable coefficients in equation (1) satisfy (the same)
constraint (16) or (26), equation (1) can be transformed
either into equation (15) or equation (22). Similarly, con-
straints (19) and (23) are the same in the sense that c1,
c10, c12 and m0 are all arbitrary, non-zero, real constants.
When the variable coefficients in equation (1) satisfy (the
same) constraint (19) or (23), equation (1) can be trans-
formed either into equation (15) or equation (22) as well.

(4) In virtue of transformation (3), the fields u(x, t)
and ψ(ξ, τ) are mutually convertible. An observer in the
(ξ, τ) space-time makes sure that the field ψ(ξ, τ) is clearly
affected by λ(τ) which is contributed from the radius vari-
ation of an artery, group velocity of an optical-fiber light
pulse, or another reason. On the other hand, another ob-
server in the (x, t) space-time finds no sign of λ(t) at all.
This is because of the “absorption” during the mapping
of (ξ, τ) onto (x, t).

(5) In illustration, we present transformation A
from equation (4) of space/laboratory dusty plasmas to
equation (15), with m = 1 and t > 0:

φ(A)(ξ, τ) =
c4√| c1 P | τ e

i

[
c6− (c2+c1 ξ)2

4 c12 P τ

]

× q
[
c2 c3 +

c2 + c1 ξ

c12 P τ
, c5 +

1
c12 P τ

]
, (27)

with q satisfying equation (15),

Q = ± P

c42 | c1 P | as the consistency condition, (28)

where c0 = 0, while c1 �= 0, c2, c3, c4 �= 0, c5 and c4 remain
arbitrary.

(6) Finally, we should mention a common point of
transformations A-D, which is the common effect of Γ (t)
on the fields u(x, t) and ψ(ξ, τ), namely,

u(x, t) ∼ e−∫
Γ (t) dt q[X(x, t), T (t) ]. (29)

Conclusions

In this Rapid Note, we have performed symbolic com-
putation and constructed transformations A, B, C and
D for equation (1) [or equivalently, Eq. (2)], a general-
ized variable-coefficient nonlinear Schrödinger model from
plasma physics, arterial mechanics and optical fibers. We
have discussed certain specialities of those transforma-
tions, which are able to transform equation (1) into the
known standard and cylindrical nonlinear Schrödinger
equations, i.e., equations (15) and (22), with the relevant
constraints on the variable coefficients presented. We have
also pointed out that the analytic solutions of equation (1)
can be obtained via those transformations from the ana-
lytic solutions of the standard and cylindrical ones.
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